Understanding Quantum Mechanics

The Interpretation of Quantum Mechanics (1994)

- Colleagues: M. Gell-Mann, J. Hartle, R. Omnès
- Principal Critics:
- B. d'Espagnat, GC. Ghirardi, A. Kent

o by R. Omnès:

- Books:
 - Understanding Quantum Mechanics (1999) • by R. B. Griffiths

Consistent Quantum Theory (2002)

- Financial support:
- National Science Foundation Physics Division

Quantum Difficulties

- Students find quantum mechanics difficult because of:
- Unfamiliar mathematics
- Quantum world different from familiar classical world
 Unresolved conceptual issues
 - Unclear to teacher \Rightarrow Opaque to student
- Why are there unresolved concentual issue
- Why are there unresolved conceptual issues?They occur with any new subject
 - Success of quantum mechanics
 - o Difficulties assigned to "Quantum Foundations"
 - Discipline not held in high regard
- Einstein, Schrödinger, Wigner, Feynman
 Famous for their work on quantum mechanics
 - Admitted they did not understand it!
 - Feynman: Nobody understands quantum mechanics
- Recent (last 20 years) progress:
 - Quantum incompatibility
 - Quantum measurements
 - Quantum probabilities

Incompatibility I. Stern-Gerlach

- What key feature separates quantum, classical physics?
 - Bohr: Complementarity
 - Heisenberg: Uncertainty
 - o Quantum incompatibility includes them both
 - Is a precise idea, based upon Hilbert space
- Stern-Gerlach experiment (1922)

- Silver atoms in ground state (S=1/2)
- \circ Spin 1/2 atom can have only two values of S_z
- \circ But what is special about S_z ?

Quantized Angular Momentum I

• Classical angular momentum vector \vec{L} (L_x, L_y, L_z)

 \circ For any w, $S_w = +1/2$ or -1/2 (in units of \hbar)

• Spin half particle:

$$\circ S_z = +1/2 \text{ or } -1/2$$

$$\circ S_z = +1/2 \text{ or } -1/2$$

 $\circ S_x = +1/2 \text{ or } -1/2$

$$S_v = 1/\sqrt{2} \text{ or } 0 \text{ or } -1/\sqrt{2}$$

o This is inconsistent with $S_v = \pm 1/2 \text{ or } -1/2$

• This is inconsistent with $S_{-} = +1/2$ or -1/2

Understanding QM 3. 5503.tex

 \circ So if $S_v = (S_x + S_z)/\sqrt{2}$ then

• What has gone wrong?

Quantized Angular Momentum II

- What is wrong with S_v = (S_x + S_z)/√2?
 Quantum, classical systems are described by different mathematics
- Spin 1/2 requires 2-dimensional Hilbert space
 Bloch sphere picture:
 - Each point on sphere \leftrightarrow quantum state

• Which state describes $S_x = +1/2$ AND $S_z = +1/2$? • There is NO such state in the Hilbert space!

Incompatibility II

- Incompatibility illustrated using spin half:
- $\circ S_z = +1/2$, $S_z = -1/2$ are mutually exclusive; one or the other is true
 - Check this using measurements $\circ S_x = +1/2, S_x = -1/2$ are mutually exclusive
 - $\circ S_z = +1/2 \text{ AND } S_x = -1/2 \text{ is } meaningless:$
- no counterpart in the Hilbert space

• Contrast with the classical world:

- Tony Blair IS/IS NOT Prime Minister of UK
 - Mutually exclusive; one and only one true

 - Al Gore IS/IS NOT President of USA • (Blair IS Prime Minister) AND (Gore IS President):
- No quantum state $\leftrightarrow S_z = +1/2$ AND $S_x = -1/2$
 - Does this mean that it is always false?
 - o If always false, its negation is always true
 - o Is $S_z = -1/2$ OR $S_x = +1/2$ always true?
 - \circ But what if $S_z = +1/2$?

meaningful but false

Incompatibility III

- Incompatible quantum descriptions cannot be combined
 - Consequence of Hilbert space mathematics
 - Is there any way around this?
- Alter the rules of logic
 - o Birkhoff, von Neumann proposal: quantum logic
 - Does it solve the paradoxes?
- Change the mathematics
 - Add (hidden) variables to Hilbert space
 - o Bohmian mechanics an example, but its
 - long-range influences conflict with relativity
 - Inevitable problem for hidden variables (Bell)
- Don't talk about microscopic systems:
 - o Only results of measurements are meaningful
 - Great Smoky Dragon (John Wheeler)

Measurements

- J. von Neumann (Mathematische Grundlagen . . . 1932)
- Unitary time development of isolated system
 - o Interaction with measurement apparatus
 - Collapse of the wave function
- Objections:
 - o "Collapse" seems odd in a physical theory
 - Applies only to *nondestructive* measurements
 - What is special about measurements? Measurement apparatus composed of atoms, etc.
 - Include apparatus in unitary time development?
 - theory is inconsistent!
- Conventional measurement theory is
 - Awkward, unnatural
 - Not applicable to real laboratory measurements
 - Internally inconsistent
 - o Not what physicists use in practice
- Why is it still in the textbooks?
 - o Introduces probabilities into quantum theory
- Can one do better?

Probabilities I. Sample Spaces

- Sample space: Mutually exclusive possibilities, one and only one of which occurs in a given experiment
 - Example: Heads, tails for coin • Example: s = 1, 2, 3, 4, 5, 6 for die
- Quantum sample space for spin half:
- $\circ S_z = +1/2, S_z = -1/2$ are like H, T for coin
- One and only one is true
 - Measurement (Stern-Gerlach) tells you which $S_x = +1/2$, $S_x = -1/2$ also a sample space
- S_z and S_x sample spaces incompatible • Combining them makes no sense
 - \circ Cannot ask if $S_z = +1/2$ OR $S_x = +1/2$:
 - they are not mutually exclusive possibilities
- "Cannot measure both S_z and S_x "
 - This is true, but misses the point:
 - What does not exist cannot be measured!

Probabilities II. Born Rule

- Born rule for probabilities:
 - o Initial $|\psi_0\rangle$ at $t_0 \to |\psi_1\rangle$ at t_1 using Schr eqn
 - $\circ \Pr(\phi) = \text{probability of } |\phi\rangle \text{ at } t_1 \text{ is } |\langle \phi | \psi_1 \rangle|^2$
 - o Must choose a sample space at t_1 :
 - $-|\phi\rangle$ part of orthonormal basis $\{|\phi_k\rangle\}$
- o Cannot combine incompatible sample spaces
- Measurements:
 - o Measurement reveals prior state of system o Example: SG spin measurement of S_z

 - Apparatus outcome + means S_z was earlier +1/2
- Contrast with von Neumann approach in which:
 - \circ Born rule \to probability of $measurement\ outcome$ o System state before measurement is unknown
- Extended Born rule for histories
 - o Born rule limited to 2 times
 - o Extending it requires:
 - Appropriate sample space
 - Consistency conditions

Quantum Paradoxes

- Partial list of quantum paradoxes
 - o Double slit o Schrödinger's cat
- Einstein-Podolsky-Rosen
 Bell-Kochen-Specker Hardy
 3 boxes (Aharonov, Vaidman)
- Tame paradox: surprising, but can be understood
- using consistent theory; no logical paradox • Example: twin paradox in relativity
- Schrödinger cat, Bell-Kochen-Specker

• Quantum theory allows alternative descriptions

- Precise formulation of incompatibility
- Einstein-Podolsky-Rosen, Hardy • Dependent (contextual) properties
 - Alternative descriptions
 - Consistent counterfactuals
 - There are NO long-range influences
- Double slit, three boxes
 - Quantum histories, consistency conditions
 - Alternative descriptions

Summary

- Sources of quantum conceptual difficulties:
 - Unclear ideas about incompatibility
 - Interpretation of theory, probabilities based on concept of measurement
- Solution to conceptual difficulties:
- Hilbert space math as guide to interpretation
 - In particular, incompatibilityProbabilities intrinsic to dynamics and
- NOT based on measurements
- Consequences:Precise rules for quantum reasoning
 - Taming of paradores
 - Taming of paradoxes Measurements are ordinary quantum processes
 - No wave function collapse
 - No long-range, superluminal influences:
 - Removes any conflict with relativity
- Can we get the new ideas into the textbooks?